Functional determinants of gate-DNA selection and cleavage by bacterial type II topoisomerases

نویسندگان

  • Elisa Arnoldi
  • Xiao-Su Pan
  • L Mark Fisher
چکیده

Antibacterial fluoroquinolones trap a cleavage complex of gyrase and topoisomerase (topo) IV inducing site-specific DNA breakage within a bent DNA gate engaged in DNA transport. Despite its importance for drug action and in revealing potential sites of topoisomerase catalysis, the mechanism of DNA selectivity is poorly understood. To explore its functional basis, we generated mutant versions of the strongly cleaved E-site and used a novel competitive assay to examine their gemifloxacin-mediated DNA breakage by Streptococcus pneumoniae topo IV and gyrase. Parallel studies of Ca(2+)-induced cleavage distinguished 'intrinsic recognition' of DNA cleavage sites by topo IV from drug-induced preferences. Analysis revealed strong enzyme-determined requirements for -4G, -2A and -1T bases preceding the breakage site (between -1 and +1) and enzyme-unique or degenerate determinants at -3, plus drug-specific preferences at +2/+3 and for +1 purines associated with drug intercalation. Similar cleavage rules were seen additionally at the novel V-site identified here in ColE1-derived plasmids. In concert with DNA binding data, our results provide functional evidence for DNA, enzyme and drug contributions to DNA cleavage at the gate, suggest a mechanism for DNA discrimination involving enzyme-induced DNA bending/helix distortion and cleavage complex stabilization and advance understanding of fluoroquinolones as important cleavage-enhancing therapeutics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Basis of Gate-DNA Breakage and Resealing by Type II Topoisomerases

Type II DNA topoisomerases are ubiquitous enzymes with essential functions in DNA replication, recombination and transcription. They change DNA topology by forming a transient covalent cleavage complex with a gate-DNA duplex that allows transport of a second duplex though the gate. Despite its biological importance and targeting by anticancer and antibacterial drugs, cleavage complex formation ...

متن کامل

Hot-spot consensus of fluoroquinolone-mediated DNA cleavage by Gram-negative and Gram-positive type II DNA topoisomerases

Bacterial DNA gyrase and topoisomerase IV are selective targets of fluoroquinolones. Topoisomerase IV versus gyrase and Gram-positive versus Gram-negative behavior was studied based on the different recognition of DNA sequences by topoisomerase-quinolone complexes. A careful statistical analysis of preferred bases was performed on a large number (>400) of cleavage sites. We found discrete prefe...

متن کامل

DNA knots and DNA supercoiling.

Type II DNA topoisomerases permit passages of double stranded DNA segments through each other and this is achieved via a complex mechanism involving a transient cleavage of one duplex, a passage of the second duplex through the topoisomerase-spanned cleavage site and finally resealing of the cut duplex. Type II DNA topoisomerases facilitate many DNA transactions requiring manipulation of long D...

متن کامل

Mutation adjacent to the active site tyrosine can enhance DNA cleavage and cell killing by the TOPRIM Gly to Ser mutant of bacterial topoisomerase I

The TOPRIM DXDXXG residues of type IA and II topoisomerases are involved in Mg(II) binding and the cleavage-rejoining of DNA. Mutation of the strictly conserved glycine to serine in Yersinia pestis and Escherichia coli topoisomerase I results in bacterial cell killing due to inhibition of DNA religation after DNA cleavage. In this study, all other substitutions at the TOPRIM glycine of Y. pesti...

متن کامل

Evolutionary twist on topoisomerases: conversion of gyrase to topoisomerase IV.

T ype II topoisomerases are essential enzymes found in all cells, where they maintain the topology of DNA in a well-defined state (1). The defining activity of type II topoisomerases is an ATP-dependent passage of a segment of dsDNA through a transient double-stranded break in a second segment of dsDNA (Fig. 1) (1, 2). Despite sharing the same core strand passage mechanism, different type II to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013